PALSAR
associated with 5 other trademarks
Nucleic acid sequences as reagents for use in genetic research, other than for medical or veterinary purposes; nucleic acids for scientific purposes, ...

Words that describe this trademark:

industry chemical  chemicals industry  genetic research  medical veterinary  chemical preparations  purposes  reagents  research  veterinary  than 

Serial Number:

88607972

Mark:

PALSAR

Status:

Registered

Status Date:

11-14-2023

Filing Date:

Registration Number:

7215616

Registration Date:

11-14-2023

Goods and Services:

Nucleic acid sequences as reagents for use in genetic research, other than for medical or veterinary purposes; nucleic acids for scientific purposes, chemical compositions and materials in the nature of chemicals for use in genotyping, all as chemicals for use in industry; reagents, enzymes, chemical compositions, chemical primers and chemical probes for use in the manufacture of pharmaceuticals; biochemical reagents commonly known as probes, for detecting and analyzing molecules in protein or nucleotide arrays; nucleic acid sequences known as probes for use in signal amplification for use in the manufacture of diagnostic reagents for scientific or medical research use; nucleic acid sequences known as probes for use in signal amplification techniques for use in the pharmaceutical industry; nucleic acid sequences known as probes for use in detecting nucleic acids for raw material in the manufacture of pharmaceuticals; nucleic acid sequences known as probes for use in detecting mRNA directly without synthesizing cDNA for use as a raw material in the manufacture of diagnostic reagents; nucleic acid sequences known as probes for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use as a raw material in the manufacture of diagnostic reagents for scientific or research use; nucleic acid sequences known as probes for use in forming self-assembly honeycomb structure for use as an ingredient in pharmaceuticals; nucleic acid sequences known as probes for use in quantifying intact drug and parent drug fragment for use as an ingredient in diagnostic reagents; nucleic acid sequences known as probes for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for an ingredient in diagnostic reagents for scientific or medical research; nucleic acid sequences known as probes for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; nucleic acid sequences known as probes for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for as diagnostic reagents for scientific or medical research use; nucleic acid sequences known as probes for use in quantifying using samples from blood, tissue and cell lysates for use in cell cultures other than for medical or veterinary use; nucleic acid sequences known as probes for use in simultaneously quantifying heteroduplex oligonucleotide drugs for diagnostic reagents and preparations, except for medical or veterinary use; nucleic acid sequences known as probes for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; nucleic acid sequences known as probes for use in self-assembly reactions for as reagents for use in industry utilizing technology of DNA self-assembly reactions; nucleic acid sequences known as probes to be used as signal amplifier for use in industry to detect nucleic acids; nucleic acid sequences known as probes for use in analyzing samples without using PCR for use in industry to detect mRNAs; biochemical reagents commonly known as probes for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; biochemical reagents commonly known as probes for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; biotin labeled honeycomb probes for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; honeycomb probes to which biotins are labeled for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; A short DNA probe pair for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; self-assembled DNA probes for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; probes made by DNA self-assembly reactions for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in signal amplification for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in signal amplification techniques for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in detecting nucleic acids for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in detecting mRNA directly without synthesizing cDNA for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in multiplex detection of mRNAs simultaneously in a single tube reaction for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in forming self-assembly honeycomb structure for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in quantifying intact drug and parent drug fragment for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in quantifying intact drug and parent drug fragment at picogram-nanogram levels for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in quantifying parent and fragments with only 1-2 mers difference for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in measuring analytes directly from matrix without using highly purified nucleic acid or reverse transcriptase reaction for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in quantifying using samples from blood, tissue and cell lysates for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in simultaneously quantifying heteroduplex oligonucleotide drugs for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in analyzing samples using bioanalytical methods for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in self-assembly reactions for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier to be used as signal amplifier for use in industry utilizing technology of DNA self-assembly reactions; A signal amplifier for use in analyzing samples without using PCR for use in industry utilizing technology of DNA self-assembly reactions; self-assembly formed by a short DNA probe pair for use in industry utilizing technology of DNA self-assembly reactions

Mark Description:

N/A

Class:

Chemicals

Type of Mark:

Trademark

Published for Opposition Date:

01-03-2023

Mark Drawing Status:

Standart Character Mark

Abandon Date:

N/A

Business Name:

LADAS & PARRY LLP

Correspondent Name:

Recent Trademark filings by this company